COMPLEX NUMBERS

Introduction: Euler was the first mathematician to introduce the symbol i (iota) for the square root of -1 with the property $i^2 = -1$. He also called this symbol as the imaginary unit.

The symbol i: It is customary to denote the complex number (0, 1) by i (iota). With this notation $j^2 = (0, 1)$ (0, 1) = (0. 0 - 1. 1, 0. 1 + 1.0) = (-1, 0) so that i may be regarded as the square root of - 1. Using the symbol i, we may write the complex number (a, b) as a + ib. For, we have a + ib = (a, 0) + (0, 1) (b, 0) = (a, 0) = (a, 0) + i (0, b) = (a, 0) + (0, b - 1. 0, 0. 0 + 1. b) = (a, 0) + (0, b) = (a + 0, 0 + b) = (a, b).

To find the values of i^n , n > 4, we first divide n by 4. Let m be the quotient and r be the remainder. Then n = 4m + r, where $0 \le r \le 3$. $\therefore i^n = i^{4m+r} = (i^4)^m i = (1)^m i = i^4$ [$\because i^4 = 1$]

Thus, if n > 4, then $i^n = i^r$, where *r* is the remainder when *n* is divided by 4. The values of the negative integral powers of *i* are found as given below:

$$\bar{i}^{1} = \frac{1}{i} = \frac{i^{3}}{i^{4}} = i^{3} = -i, \ \bar{i}^{2} = \frac{1}{i^{2}} = \frac{1}{-1} = -1.$$

Complex Number: An ordered pair of real numbers a, b, written as (a, b) is called a complex number If we write z = (a, b), then a is called the real part of z and b the imaginary part of z. It is customary to write Re (z) = a, Im (z) = b, where Re. (z) stands for the real part of z and Im (z) stands for the imaginary part of z.

Equality of Complex Numbers: Two complex numbers $z_1 = (a_1, b_1)$ and $z_2 = (a_2, b_2)$ are equal if $a_1 = a_2$ and $b_1 = b_2$. Thus, $z_1 = z_2 \Rightarrow \text{Re}(z_1) = \text{Re}(z_2)$ and Im $(z_1) = \text{Im}(z_2)$

Algebra of Complex Numbers: Let $z_1 = (a_1, b_1)$ and $z_2 = (a_2, b_2)$ Then we have the following definitions of the addition, subtraction, multiplication and division of z_1 and z_2 .

Addition of Complex Numbers: Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ be two complex numbers. Then their sum $z_1 + z_2$ is defined as the complex number $(a_1 + a_2) + i(b_1 + b_2)$.

It follows from the definition that the sum $z_1 + z_2$ is a complex number such that

and

Re
$$(z_1 + z_2)$$
 = Re (z_1) + Re (z_2)
Im $(z_1 + z_2)$ = Im (z_1) + Im (z_2)

e.g. If $z_1 = 2 + 3i$ and $z_2 = 3 - 2i$, then $z_1 + z_2 = (2 + 3) + (3 - 2)i = 5 + i$

Properties of Addition of Complex Numbers

- (I) Addition is Commutative: For any two complex numbers z_1 and z_2 , we have $z_1 + z_2 = z_2 + z_1$.
- (II) Addition is Associative: For any three complex numbers z_1 , z_2 , z_3 , we have $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$.
- (III) Existence of Additive Identity: The complex numbers 0 = 0 + i 0 is the identity element for addition *i.e.* z + 0 = z = 0 + z for all $z \in C$.
- (IV) Existence of Additive Inverse: The complex number z = -z is the identity element for addition i.e. z + (-z) = 0 = (-z) + z for all $z \in C$.

Subtraction of Complex Numbers: Let $z_1 = a_1 + i b_1$ and $z_2 = a_2 + ib_2$ be two complex numbers. Then the subtraction of z_2 from z_1 is denoted by $z_1 - z_2$ and is defined as the addition of z_1 and $-z_2$.

Thus,
$$z_1 - z_2 = z_1 + (-z_2) = (a_1 + ib_1) + (-a_2 - ib_2)$$

= $(a_1 - a_2) + i (b_1 - b_2)$

Multiplication of complex numbers: Let $z_1 = a_1 + i b_1$ and $z_2 = a_2 + i b_2$ be two complex numbers. Then multiplication of z_1 with z_2 is defined as complex numbers $(a_1 a_2 - b_1 b_2) + i (a_1 a_2 - a_1 b_1)$.

Thus,
$$z_1 z_2 = (a_1 + ib_1) (a_2 + ib_2)$$

= $(a_1 a_2 - b_1 b_2) + i (a_1 b_2 + a_2 b_1)$
 $\Rightarrow z_1 z_2 = [Re(z_1) Re(z_2) - Im(z_1) Im(z_2)] + i [Re(z_1) Im(z_2) - Re(z_2) Im(z_1)]$

e.g. if
$$z_1 = 3 + 2i$$
 and $z_2 = 2 - 3i$, then $z_1z_2 = (3 + 2i)(2 - 3i) = (3 \times 2 - 2 \times (-3)) + i(3 \times -3 + 2 \times 2) = 12 - 5i$

Properties of Multiplication

(I) Multiplication is Commutative: For any two complex numbers z_1 and z_2 , we have $z_1 z_2 = z_2 z_1$.

1

- (II) Multiplication is Associative: For any three complex numbers z_1 , z_2 , z_3 , we have $(z_1 z_2) z_3 = z_1 (z_2 z_3)$.
- (III) **Existence of Identity Element for Multiplication:** The complex number I = 1 + i0 is the identity element for multiplication i.e. for every complex number *z*, we have $z^{-1} = z = I^{-1} z$.
- (IV) Existence of Multiplicative Inverse: Corresponding to every non-zero complex number z = a + ib there exists a complex number $z_1 = x + iy$ such that

$$z \cdot z_1 = 1 = z_1 \cdot z_2$$

e.g. Find the multiplicative inverse of z = 3 + 2i.

Sol. Using the above formula, we have

$$z^{-1} = \frac{1}{3-2i} * \frac{3+2i}{3+2i} \Rightarrow \frac{3+2i}{3^2 - (2i)^{2i}}$$
$$\Rightarrow \frac{3+2i}{9 - (-4)} = \frac{3}{13} + \frac{2i}{13}$$
$$\Rightarrow z^{-1} = \frac{3}{3^2 + (-2)^2} + \frac{i(-(-2))}{3^2 + (-2)^2} = \frac{3}{13} + \frac{2}{13}i$$

Division: The division of a complex number z_1 by a non-zero complex number z_2 is defined as the product of z_1 by the multiplicative inverse of z_2 Thus, $\sqrt{2}$

If
$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$, then

$$\frac{z_1}{z_2} = (a_1 + ib_1) \left(\frac{a_2}{a_2^2 + b_2^2} + \frac{i(-b_2)}{a_2^2 + b_2^2} \right) = \frac{a_1a_1^2 + b_1b_2}{a_2^2 + b_2^2} + i\frac{(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2}$$

e.g. If $z_1 = 2 + 3i$ and $z_2 = 1 + 2i$, then

$$\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2} = (2+3i) \left(\frac{1}{1+2i}\right) = (2+3i) \left(\frac{1}{5} - \frac{2}{5}i\right)$$
$$= \left(\frac{2}{5} + \frac{6}{5}\right) + i\left(-\frac{4}{5} + \frac{3}{5}\right) = \frac{8}{5} - \frac{1}{5}i$$

Multiplicative Inverse or Reciprocal of a Complex Number:

Let z = a + ib = (a, b) be a complex number Since 1 + i0 is the multiplicative identity, therefore if x + iy is the multiplicative inverse of z = a + ib. Then (a + ib) (x + iy) = 1 + i0 (ax - by) + i (ay + bx) = 1 + i0 $ax - by = 1 \ bx + ay = 0$ $x = \frac{a}{a^2 + b^2}, y = \frac{-b}{a^2 + b^2}$, if $a^2 + b^2 \neq 0$ i.e. $z \neq 0$ Thus, the multiplicative inverse of a + ib is $\frac{a}{a^2 + b^2} + \frac{i(-b)}{a^2 + b^2}$. The multiplicative inverse of z is denoted by 1/z

or z^{-1} .

Modulus of a Complex Number: The modulus of a complex number z = a + i b is denoted by |z| and is defined as

$$|Z| = \sqrt{a^2 + b^2} = \sqrt{\{\text{Re}(z)\}^2 + \{\text{Im}(z)\}^2}$$
.

Clearly, $|Z| \ge 0$ for all $z \in C$.

e.g. If
$$z_1 = 3 - 4i$$
, $z_2 = -5 + 2i$, $z_3 = 1 + \sqrt{-3}$, then
 $|Z_1| = \sqrt{3^2 + (-4)^2} = 5$, $|Z_2| = \sqrt{(-5)^2 + 2^2} = \sqrt{29}$
and $|Z_3| = |1 + i\sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = 2$.

Properties of Moduli

(1)
$$|z| = |\overline{z}|$$
 (2) $|z_1 z_2| = |z_1| |z_2|$

(3)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
 (4) $|z_1 + z_2| \le |z_1| + |z_2|$

(5)
$$|z_1 - z_2| \ge |z_1| - |z_2|$$
 (6) $|z_1 - z_2| \le |z_1| + |z_2|$

(7)
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1 \overline{z_2})$$
 or
 $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2|z_1||z_2| \cos(\theta_1 - \theta_2)$, where $\theta_1 = \arg(z_1)$ and $\theta_2 = \arg(z_2)$

(8)
$$|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2\operatorname{Re}(z_1, \overline{z_2})$$
 or $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2|z_1||z_2| \cos(\theta_1 - \theta_2)$,

(9)
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$
.

Conjugate of a Complex Number: If z = a + ib is a complex number, then a - ib is called the conjugate of z and is denoted by \overline{z}

Geometrical Representation of Complex Number: The complex number z = a + ib = (a, b) is represented by a point P whose coordinates are (a, b) referred to rectangular axes XOX' and YOY', which are called real and imaginary axes respectively. Thus a complex number z is represented by a point P in a plane, and corresponding to every point in this plane there exists a complex number Such a plane is called Argand plane or Argand diagram or Complex plane or Gaussian plane.

and is denoted by |z|. Thus, $|z| = +\sqrt{a^2 + b^2} = \sqrt{(\text{Re}(x))^2 + (w^2)^2}$ We have, $\tan \theta = \frac{b}{a} = \frac{\text{Im}(z)}{\text{Re}(z)} \therefore \theta = \tan^{-1}\left(\frac{\text{Im}(z)}{\text{Re}(z)}\right)$

 θ is called the **amplitude or argument** of z and is written as $\theta = amp(z)$ or $\theta = arg(z)$ A value of θ satisfying $-\pi < \theta \le \pi$ is called the principal value of the argument. Thus, if r is the modulus and θ is the argument of a complex number z = a + ib, then $z = r(\cos \theta + i \sin \theta)$. (Because $a = r \cos \theta$, $b = r \sin \theta$). This is called the polar form of z. **Properties of Argument:**

(1) $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ (2) $\arg(z_1) = \arg(z_1) + \arg(z_2)$

(2)
$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$$

Argument or Amplitude of a complex number z = x + iy for different signs of x and y

(I) Argument of z = x + iy, when x > 0 and y > 0: Since x and y both positive, therefore the point P(x, y) representing z = x + iy in the Argand plane lies in the first quadrant Let θ be the argument of z and let α be the acute angle satisfying tan $\alpha = |y/x|$.

Thus, if x and y both are positive then the argument of z = x + iy is the acute angle (α) given by $\tan^{-1}|y/x|$.

(II) Argument of z = x + iy, when x < 0 and y > 0: Since x < 0 and y > 0 therefore the point p(x, y) representing z = x + iy in the Argand plane lies in the second quadrant Let θ be the argument of z and let a be the actue angle satisfying tan

 $\alpha = |y/x|$ Then $\theta = \pi - \alpha$.

Thus, if x and y both are positive then the argument of z = x + iy is $\pi - \alpha$ where α is the acute angle given by $\tan^{-1}|y/x|$.

(III) Argument of z = x + iy, when x < 0 and y < 0: Since x > 0 and y < 0 therefore the point P(x, y) representing z = x + iy lies in the third quadrant Let θ be the argument of z and α be the acute angle given by tan α = |y/x|. Then we have θ = (π - α) = π + α.
Thus, if x < 0 and y < 0 then argument of z = x + iy is π - α where α is the acute angle given by

(IV) Argument of z = x + iy, when x > 0 and y < 0. Since x > 0 and y < 0, therefore the point P(x, y) representing z = x + iy lies in the fourth quadrant. Let θ be the argument of z and let α be the actue angle given by $\tan \alpha = |y/x|$ Then we have $\theta = -\alpha$. Thus, if x > 0 and y > 0, then the argument of z = x + iy is $\pi - \alpha$ where α is the acute angle given by

 $\tan \alpha |\mathbf{y}/\mathbf{x}|$.

 $\tan \alpha = |y/x|$

Algorithm for finding Argument of z = x + iy

STEP I: Find the value of $\tan^{-1} y/x$ lying between 0 and $\pi/2$. Let it be α

STEP II. Determine in which quadrant the point P(x, y) belong

If P(x, y) belongs to the first quadrant, then arg (z) = α

If P(x, y) belongs to the second quadrant, then arg (z) = $\pi - \alpha$

If P(x, y) belongs to the third quadrant, the arg (z) = $-(\pi - \alpha)$ or $\pi + \alpha$

If P(x, y) belongs to the fourth quadrant, then arg (z) – α or 2 π – α

Some Standard Locii in the Argand Plane

- 1. If z is a vartiable point in the Argand plane such that arg (z) = θ , then locus of z is a straight line (excluding origin) through the origin inclined at an angle θ with x –axis
- 2. If z is a vairable point and z_1 is a fixed point in the Argand plane such that arg $(z z_1) = \theta$ then locus of z is a straight line passing through the point representing z_1 and inclined at an angle θ with x-axis Note that the point z_1 is excluded form the locus.
- 3. If z is a variable point and z_1 , z_2 are two fixed points in the Argand plane, then
 - * $|z z_1| = |z z_2| \Rightarrow$ locus of z is the perpendicular bisector of the line segment joining z_1 and z_2
 - * $|z-z_1|+|z-z_2| = \text{const} \cdot (\neq |z_1-z_2|) \Rightarrow \text{locus of } z \text{ is an ellipse.}$
 - * $|z z_1| + |z z_2| = |z_1 z_2| \Rightarrow$ locus of z is the line segment joining z_1 and z_2
 - * $|z z_1| |z z_2| = |z_1 z_2| \Rightarrow$ locus of z is a straight line joining z_1 and z_2 but does not lie between z_1 and z_2
 - * $|z z_1|^2 + |z z_2|^2 = |z_1 z_2|^2 \Rightarrow$ locus of z is circle with z_1 and z_2 as the extremities of diameter.
 - * $|z z_1| = k|z z_2|, k \neq 1 \Rightarrow$ locus of z is a segment of circle.
 - * arg $\left(\frac{z-z_1}{z-z_2}\right) = \alpha$ (fixed) \Rightarrow locus of z is a segment of circle
 - * arg $\left(\frac{z-z_1}{z-z_2}\right) = \pi/2 \Rightarrow$ Locus of z is a circle with z_1 and z_2 as the vertices of diameter.
 - * arg $\left(\frac{z-z_1}{z-z_2}\right) = 0$ or $\pi \Rightarrow$ Locus of z is a straight line passing through z_1 and z_2

Complex Form of Various Locii:

- 1. The equation of a circle with centre at z_1 and result r is $|z z_1| = r$
- 2. $|z z_1| < r$ represents interior of a circle $|z z_1| = r$ and $|z z_1| > r$ represents the exterior of the circle $|z z_1| = r$
- 3. $\left|\frac{z-z_1}{z-z_2}\right| = K$ represents a circle if $K \neq 1$. When K = 1, it represents a straight line.
- 4. $|z z_1| + |z z_2| = 2a$ where $a \in R^+$ represents an ellipse having foci at z_1 and z_2
- 5. Each complex cube root of unity is the square of the other.
- 6. Cube roots of -1 are -1, $-\omega$ and $-\omega^2$

Remark: The idea of finding cube roots of 1 and – 1 can be extended to find cube roots of any real number. If a is any positive real number then $a^{1/3}$ has values $a^{1/3}$, $a^{1/3}\omega$, $a^{1/3}\omega^2$. If a is a negative real number then $a^{1/3}$ has values $-|a|^{1/3}$ has values $-|a|^{1/3}$, $-|a|^{1/3}\omega$ and $-|a|^{1/3}\omega^2$ For example, $8^{1/3}$ has values 2, 2ω and $2\omega^2$ where as $(-8)^{1/3}$ has -2, -2ω and $-2\omega^2$.

SQUARE ROOTS OF A COMPLEX NUMBER

Let a + ib be a complex number such that $\sqrt{a + ib} = x + iy$, where x and y are real numbers.

Then,
$$\sqrt{a + ib} = x + iy \Rightarrow (a + ib) = (x + iy)^2$$

 $\Rightarrow a + ib = (x^2 - y^2) + 2 i xy$
 $\Rightarrow x^2 - y^2 = a$ (i) and, $2 xy = b$ (ii) [On equating real and imaginary parts.]
Now, $(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4 x^2 y^2$
 $\Rightarrow (x^2 + y^2)^2 = a^2 + b^2 \Rightarrow (x^2 + y^2) = \sqrt{a^2 + b^2}$ (iii)
Solving the equations (i) and (ii), we get
 $x^2 = (1/2) \{\sqrt{a^2 + b^2} + a\}$ and $y^2 = (1/2) \{\sqrt{a^2 + b^2} - a\}$
 $\Rightarrow x = \pm \sqrt{(\frac{1}{2})} \{\sqrt{a^2 + b^2} + a\}$ and $y = \pm \sqrt{(\frac{1}{2})} \{\sqrt{a^2 + b^2} - a\}$

If *b* is positive, then by equation (ii), *x* and *y* are of the same sign. Hence,

$$\sqrt{a+ib} = \pm \left\{ \sqrt{\frac{1}{2} \{a^2 + b^2\}} + a \} + i \sqrt{\frac{1}{2} \{\sqrt{a^2 + b^2} - a \}} \right\}$$

If b is negative, then by equation (ii), x and y are of different signs. Hence,

$$\sqrt{a + ib} = \pm \left\{ \sqrt{\frac{1}{2} \{a^2 + b^2 + a\}} - i\sqrt{\frac{1}{2} (\sqrt{a^2 + b^2} - a\}} \right\}$$
E.g. Find the square root of 7 – 24i
Sol. Let $\sqrt{7 - 24i} = x + iy$. Then,
 $\sqrt{7 - 24i} = x + iy \Rightarrow 7 - 24 i = (x + iy)^2$
 $\Rightarrow 7 - 24 i = (x^2 - y^2) + 2 i xy$
 $\Rightarrow x^2 - y^2 = 7 \dots (i) \ 8 \ 2 \ xy = -24$
Now, $(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4 \ x^2 \ y^2$
 $\Rightarrow (x^2 + y^2)^2 = 49 + 576 = 625$
 $\Rightarrow x^2 + y^2 = 25 \dots (iii) [\because x^2 + y^2 > 0]$
On solving (i) and (iii), we get
 $x^2 = 16$ and $y^2 = 9 \Rightarrow x \pm 4$ and $y = \pm 3$
From (ii), $2xy$ is negative. So, x and y are opposite signs.
 $\therefore (x = 4 \ and \ y = -3)$ or $(x = -4 \ and \ y = 3)$
Hence, $\sqrt{7 - 24i} = \pm (4 - 3i)$
De-Moivere's Theorem
Statement: (i) If $n \in Z$ (the set of integers), then
 $(\cos\theta + i \sin \theta)^n = \cos n \theta + i \sin n \theta$
(ii) If $n \in Q$ (the set of rational numbers), then cos $n \theta + i \sin n \theta$ is one of the values of
 $(\cos\theta + i \sin \theta)^n$.
Proof: (i) We divide the proof into the following three cases:
Case 1 When $n = 0$.
In this case $(\cos \theta + i \sin \theta)^n$
 $= (\cos \theta + i \sin \theta)^0 = 1 = \cos (0.\theta) + i \sin (0.\theta)$
 $= \cos n \theta + i \sin n \theta$ [$\because n = 0$]
So, the theorem holds good for $n = 0$.

Case II	When $n \in N$ i.e. n is a positive integer
	In this case we shall prove the theorem by induction on <i>n</i> .
	the theorem is true for $n = 1$, because
	$(\cos\theta + i\sin\theta)^1 = \cos\theta + i\sin\theta = \cos(1.\theta) + i\sin(1.\theta)$
	Let us assume that the theorem is true for $n = m$. Then,
	$(\cos \theta + i \sin \theta)^m = \cos m \theta + i \sin m \theta \qquad \dots (a)$
	Now, we shall show that the theorem is true for $n = m + 1$.
	We have, $(\cos \theta + i \sin \theta)^{m+1}$
	$(\cos \theta + i \sin \theta)^m (\cos \theta + i \sin \theta)$
	$(\cos m \theta + i \sin m \theta) (\cos \theta + i \sin \theta)$ [Using (a)]
	$(\cos m \theta \cos \theta - \sin m \theta \sin \theta) + i (\cos m \theta \sin \theta + \sin m \theta \cos \theta)$
	$\cos(m\theta + \theta) + i\sin(m\theta + \theta)$
	$\cos(m+1)\theta + i\sin(m+1)\theta$
	So, the theorem holds good for $n = m + 1$.
	Hence, by induction the theorem holds good for all $n \in N$.
<u>Case III</u>	When n is a negative integer.
	Let $n = -m$, where $m \in N$. Then,
	$(\cos \theta + i \sin \theta)^{\prime\prime} = (\cos \theta + i \sin \theta)^{-\prime\prime}$
	$=$ $\frac{1}{1}$ $=$ $\frac{1}{1}$
	$(\cos\theta + i\sin\theta)^m$ $\cos m\theta + i\sin m\theta$
	$=$ <u>1</u> $\times \frac{\cos m\theta - i \sin m\theta}{\cos \theta}$
	$\cos m\theta + i \sin m\theta = \cos m\theta - i \sin m\theta$
	$= \frac{\cos m\theta - i \sin m\theta}{\cos^2 m\theta + \sin^2 m\theta} = \cos m\theta - i \sin m\theta$
	$= \cos(-m)\theta + i\sin(-m)\theta$
	$= \cos n\theta + i \sin n\theta$
	Hence $(\cos \theta + i \sin \theta)^n = \cos n \theta + i \sin n \theta$ for all $n \in \mathbb{Z}$
(ii)	Let $n = \frac{p}{q}$, where p, q are integers and $q > 0$. From part (i) we have
	$\left(\cos\frac{p\theta}{q} + i\sin\frac{p\theta}{q}\right)^{q} = \cos\left(\left(\frac{p\theta}{q}\right)q\right) + i\sin\left(\left(\frac{p\theta}{q}\right)q\right)$
	$= \cos p \theta + i \sin p \theta$
	$\Rightarrow \cos \frac{p\theta}{q} + i \sin \frac{p\theta}{q} \text{ is one of the values of } (\cos p \theta + i \sin p \theta)^{1/q}$
	$\Rightarrow \cos \frac{p\theta}{q} + i \sin \frac{p\theta}{q} \text{ is one of the values of } [(\cos \theta + i \sin \theta)^{p}]^{1/q}$
	$\Rightarrow \cos \frac{p\theta}{q} + i \sin \frac{p\theta}{q} \text{ is one of the values of } (\cos \theta + i \sin \theta)^{p/q}$
Remark 1	The theorem is also true for ($\cos \theta - i \sin \theta$) i.e.
	$(\cos \theta - i \sin \theta)^n = \cos n \theta - i \sin n \theta$, because
	$(\cos \theta - i \sin \theta)^n = [\cos (-\theta) + i \sin (-\theta)]^n$
	$= \cos (n(-\theta) + i \sin (n(-\theta)))$
	$= \cos(-n\theta) + i \sin(-n\theta) = \cos n\theta - i \sin n\theta$

<u>Remark 2</u>	$\frac{1}{\cos\theta + i\sin\theta} = (\cos\theta + i\sin\theta)^{-1} = \cos\theta - i\sin\theta$
<u>Note</u> 1:	$(\sin \theta \pm i \cos \theta)^n \neq \sin n \theta \pm i \cos n \theta$
<u>Note</u> 2:	$(\sin \theta + i \cos \theta)^n = [\cos (\pi/2 - \theta) + i \sin (\pi/2 - \theta)]^n$
	$= \cos (n \pi/2 - n \theta) + i \sin (n \pi/2 - n \theta)$
<u>Note</u> 3:	$(\cos \theta + i \sin \phi)^n \neq \cos n \theta + i \sin n \phi$
e.g.	If $x_n = \cos\left(\frac{\pi}{2^n}\right) + i \sin\left(\frac{\pi}{2^n}\right)$ prove that
	$x_1 . x_2 . x_3 $ to infinity = -1.
	$= \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \left(\cos\frac{\pi}{2^2} + i\sin\frac{\pi}{2^2}\right) \left(\cos\frac{\pi}{2^3} + i\sin\frac{\pi}{2^3}\right) \dots \infty$
	$= \cos\left(\frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots\right) + i\sin\left(\frac{\pi}{2} + \frac{\pi}{2^2} + \frac{\pi}{2^3} + \dots\right)$
	$= \cos\left(\frac{\pi/2}{1-1/2}\right) + i\sin\left(\frac{\pi/2}{1-1/2}\right) \left[a + ar + ar^2 + \dots \frac{a}{1-r}\right]$
	$= \cos \pi + i \sin \pi = -1.$

Roots of a Complex Number: Let z = a + ib be a complex number, and let $r(\cos \theta + i \sin \theta)$ be the polar form of z. Then by De Moivre's theorem $r^{1/n}\left\{\cos\left(\frac{\theta}{n}\right) + i\sin\left(\frac{\theta}{n}\right)\right\}$ is one of the values of $z^{1/n}$. Here we shall show that $z^{1/n}$ has n distinct values. We know that

 $\cos \theta + i \sin \theta = \cos (2 \ m \ \pi + \theta) + i \sin (2 \ m \ \pi + \theta), \ m = 0, 1, 2, \dots$ So, $z^{1/n} = r^{1/n} \left[\cos (2 \ m \ \pi + \theta) + i \sin (2 \ m \ \pi + \theta) \right]^{1/n}$ $= r^{1/n} \left[\cos \frac{2m\pi + \theta}{n} + i \sin \frac{2m\pi + \theta}{n} \right]$

Now by giving *m* the values 0, 1, 2,..., (n - 1); we shall obtain distinct values of $z^{1/n}$. For the values m = n, n + 1, ..., the values of $z^{1/n}$ will repeat. For example, if m = n, then

$$z^{1/n} = r^{1/n} \left[\cos \frac{2n\pi + \theta}{n} + i \sin \frac{2n\pi + \theta}{n} \right]$$
$$= r^{1/n} \left[\cos \left(2\pi + \frac{\theta}{n} \right) + i \sin \left(2\pi + \frac{\theta}{n} \right) \right] = r^{1/n} \left(\cos \frac{\theta}{n} + i \sin \frac{\theta}{n} \right)$$

Which is same as the value obtained by taking m = 0. On taking m = n + 1, the values comes out to be identical with corresponding to m = 1. Hence $z^{1/n}$ has *n* distinct values.

Euler's form for complex numbers: Any complex number Z can be represented as

$$Z = e^{i\theta} = \cos \theta + i\sin \theta$$
$$\overline{Z} = e^{-i\theta} = \cos \theta - i\sin \theta.$$

Cube Roots of Unity: Let $z = 1^{1/3} = 1(\cos 0 + i \sin 0)^{1/3} = (\cos 2r \pi + i \sin 2r \pi)^{1/3}$		
where r in an integer, = $\cos \frac{2r\pi}{3} + i\sin \frac{2r\pi}{3}$ where r = 0, 1, 2		
∴ z =	= 1, $\cos \frac{2r\pi}{3}$ + $i\sin \frac{2r\pi}{3}$, $\cos \frac{4r\pi}{3}$ + $i\sin \frac{4r\pi}{3}$ or $z = 1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 - i\sqrt{3}}{2}$	
Hence	e, three cube roots of unity are $1, \frac{-1+i\sqrt{3}}{2}, \frac{-1-i\sqrt{3}}{2}$ or 1, ω, ω^2 where $\omega = \frac{-1+i\sqrt{3}}{2}$	
Properties of cube roots of unity:		
(1) 1+ω	$+\omega^2 = 0.$	
(2) Three	e cube roots of unity lie on a circle $ z = 1$ and divide it in three equal parts.	
(3) Cube	roots of unity are in GP.	
nth Roots of Unity: Let $z = 1^{1/n}$ Then $z = (\cos 0 + i \sin 0)^{1/n}$ (Because 1 = cos o + i sin 0) $z = (\cos 2k \pi + i \sin 2r \pi)^{1/n}$ where $r \in Z$ (the set of integers.)		
$z = \cos \frac{2r\pi}{n} + i \sin \frac{2r\pi}{n}$ (Using De 'Moivre's theorem), where r = 0, 1, 2,,(n - 1)		
$z = e^{\frac{i^{2r\pi}}{n}}$ where r = 0, 1, 2,,(n - 1)		
let $\alpha = e^{i\frac{2r}{r}}$	$\frac{\pi}{2}$ Then nth roots of unity are 1, α , α^2 , α^{n-1}	
Properties	of nth roos of unity:	
(1) The n nth roots of unity in G.P.		
(2) The product of n, nth roots of unity is $(-1)^{n+1}$		
(3) The n nth roots of unity lie on a circle $ z = 1$.		
Algorithm f	or finding n th roots of a given Complex Number	
Step 1:	Write the given complex number in polar form.	
Step 2:	Add 2 m π to the argument.	
Step 3:	Apply De Moivre's theorem.	
Step 4:	Put m = 0, 1, 2,, $(n - 1)$ i.e. one less than the number in the denominator of the given index in	
	the lowest form.	
E.g.	Find ∛–1	
Sol.	Let $z = -1$. Then $ Z = 1$ and arg $(z) = \pi$. So, the polar form of z is $(\cos \pi + i \sin \pi)$.	
	Now, $z^{1/3} = (\cos \pi + i \sin \pi)^{1/3}$	
	$= \left[\cos \left(2 \ m\pi + \pi\right) + i \sin \left(2 \ m\pi + \pi\right)\right]^{1/3}$	
	= cos (2 m + 1) $\frac{\pi}{3}$ + i sin (2 m + 1) $\frac{\pi}{3}$, m = 0, 1, 2	
	For $m = 0$, $z^{1/3} = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = \frac{1}{2}(1 + i \sqrt{3})$	

For m = 1, $z^{1/3} = \cos \pi + i \sin \pi = -1$ From m = 2,

www.TCYonline.com

 $z^{1/3} = \cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} = \cos \left(2\pi - \frac{\pi}{3}\right) + i \sin \left(2\pi - \frac{\pi}{3}\right)$

$$=\cos \frac{\pi}{3} - \sin \frac{\pi}{3} = \frac{1}{2} (1 - i \sqrt{3})$$

Hence, the values of $z^{1/3}$ are $\frac{1}{2}(1 \pm i\sqrt{3}), -1$.

LOGARITHM OF A COMPLEX NUMBER

Let x + iy and a + ib be two complex numbers such that $a + ib = e^{x+iy}$, then x + iy is called logarithm of a + ib to the base e and we write

 $x + iy = \log_{e} (a + ib).$ Since $e^{i2n\pi} = \cos 2n\pi + i\sin 2n\pi = 1$ $\therefore e^{x+iy} = e^{x+iy} e^{i2n\pi} = e^{x+i(2n\pi+y)}$ for all $n \in \mathbb{Z}$

Hence, if x + i y be logarithm of a + i b, then $x + i (2n)\pi + y$ is also a logarithm of a + ib for all integral values of *n*. The value $x + i (y + 2n\pi)$ is called the general value of log (a + ib) and is denoted by Log (a + ib). Thus,

 $Log (a + i b) = 2 n \pi i + log (a + i b)$

Let $a + ib = r(\cos \theta + i\sin \theta) = re^{i\theta}$ where r = |Z| and $\theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right)$ Then $\log (a + ib) = \log (re^{i\theta}) = \log r + i\theta$ $= \log \sqrt{a^2 + b^2} + i \tan^{-1} \left(\frac{b}{a}\right)$ $\log (z) = \log |Z| + i \operatorname{amp} (z)$, where z = a + i b. or $\log (1 + i) = \log |1 + i| + i \arg (1 + i)$ e.g. $= \log \sqrt{2} + i\pi/4 = \frac{1}{2}\log 2 + \frac{i\pi}{4}$ Find (i)ⁱ e.g. Sol. Let $A = (i)^{i}$. Then, $\log A = \log (i)^{i} = i \log i = i \log (0 + i)$ = $i \{ \log 1 = i \pi/2 \}$ [:: $|i| = 1 \text{ and } \arg(i) = \pi/2 \}$ $= i \{0 + i\pi/2\} = -\pi/2$ $A = e^{-\pi/2}.$